Relative specificities in binding of Watson-Crick base pairs by third strand residues in a DNA pyrimidine triplex motif.

نویسندگان

  • J A Fossella
  • Y J Kim
  • H Shih
  • E G Richards
  • J R Fresco
چکیده

The specificity of binding of Watson-Crick base pairs by third strand nucleic acid residues via triple helix formation was investigated in a DNA pyrimidine triplex motif by thermal melting experiments. The host duplex was of the type A10-X-A10: T10-Y-T10, and the third strand T10-Z-T10, giving rise to 16 possible triplexes with Z:XY inserts, 4 duplexes with the Watson-Crick base pairs (XY) and 12 duplexes with mismatch pairs (XZ), all of whose stabilities were compared. Two Z:XY combinations confirm the primary binding of AT and GC target pairs in homopurine.homopyrimidine sequences by T and C residues, respectively. All other Z:XY combinations in the T:AT environment result in triplex destabilization. While some related observations have been reported, the present experiments differ importantly in that they were performed in a T:AT nearest neighbor environment and at physiological ionic strength and pH, all of which were previously untested. The conclusions now drawn also differ substantially from those in previous studies. Thus, by evaluating the depression in Tm due to base triplet mismatches strictly in terms of third strand residue affinity and specificity for the target base pair, it is shown that none of the triplet combinations that destabilize qualify for inclusion in the third strand binding code for the pyrimidine triplex motif. Hence, none of the mismatch triplets afford a general way of circumventing the requirement for homopurine.homopyrimidine targets when third strands are predominated by pyrimidines, as others have suggested. At the same time, the applicability of third strand binding is emphasized by the finding that triplexes are equally or much more sensitive to base triplet mismatches than are Watson-Crick duplexes to base pair mismatches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ساختار مولکول DNA سه رشته ای: اهمیت و کاربردهای پزشکی آن

Back in 1957, when investigators produced a triple-stranded form of DNA while studying synthetic nucleic acids, few researchers paid much attention to the discovery. However, triplex DNA was never entirely forgotton and especially since 1987 its structural and functional importance in biological systems as well as its medical applications and therapeutic potentional have been extensively studie...

متن کامل

Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate

The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated cho...

متن کامل

Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides

Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and r...

متن کامل

Specificity and stringency in DNA triplex formation.

Triple-helix formation can in principle serve as a general method for sequence-specific recognition and physical separation of duplex DNA molecules. Realization of this goal depends on how much the triplex is destabilized by mismatches and other defects (specificity) and on finding conditions in which perfect complexes are stable and defect complexes are not (stringency). We have addressed the ...

متن کامل

Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.

We report a complete thermodynamic characterization of the stability and the melting behavior of an oligomeric DNA triplex. The triplex chosen for study forms by way of major-groove Hoogsteen association of an all-pyrimidine 15-mer single strand (termed y15) with a Watson-Crick 21-mer duplex composed of one purine-rich strand (termed u21) and one pyrimidine-rich strand (termed y21). We find tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 21 19  شماره 

صفحات  -

تاریخ انتشار 1993